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Docket No. FDA-2014-D-1856:  Comments to the Draft Guidance Document Titled “Human 
Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) from Adipose Tissue: 
Regulatory Considerations; Draft Guidance for Industry” (December 2014) 
 
Dear Sirs and Madams: 

IFATS, the International Federation of Adipose Therapeutics and Sciences, was founded in 2003 

by pioneering adipose stem cell biologists and clinician–scientists. Since that time, attendance 

at the IFATS annual meetings has grown by nearly ten-fold, drawing members from 40 

countries in North America, Europe, Africa, the Middle East, Asia, Australia, and Central and 

South America. The IFATS annual meeting serves as a unique scientific forum that brings 

together basic scientists, clinicians, translational researchers, and regulatory and biotech 

representatives to discuss the latest advances in adipose tissue biology and therapeutics.  IFATS 

is formally aligned with the prestigious journal, Stem Cells, where a number of the IFATS 

members serve on the journal’s editorial board, as well as on the editorial board of its sister 

journal, Stem Cells Translational Medicine.  Furthermore, in collaboration with the International 

Society for Cellular Therapy (ISCT), IFATS has provided the scientific community with a detailed 

description and definition of adipose derived cells (both stromal vascular fraction, or SVF, and 

adipose-derived stromal/stem cells, or ASCs) in a formal  publication in Cytotherapy.1  In 

addition to including leading basic adipose biologists from around the world, the IFATS 

membership also includes cardiologists, immunologists, neuroscientists, plastic and 

reconstructive surgeons, orthopedists, and vascular surgeons who are at the forefront of 

regenerative medical applications involving adipose tissue and cells.  As such, IFATS has the 

necessary expertise to serve as a resource and think-tank for regulatory agencies examining the 

safety and efficacy of adipose tissue-related products and therapies. IFATS is committed to 

patient safety in the translation of new adipose therapies.   

IFATS respectfully submits comments to the Draft Guidance Document Titled “Human Cells, 
Tissues, and Cellular and Tissue-Based Products (HCT/Ps) from Adipose Tissue: Regulatory 
Considerations; Draft Guidance for Industry” (December 2014).   
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IFATS requests the FDA to reconsider three main points in the Draft Guidance document.  These 
are 1) the categorization of adipose exclusively and/or primarily as structural; 2) the concept 
that decellularizing adipose tissue represents more than minimal manipulation; and, 3) the 
concept that adipose HCT/P’s for breast applications would represent non-homologous use.  
 
Structural Classification of Adipose Tissue 
 
The FDA defines HCT/P as “Structural” or “Nonstructural” under 21 CFR 1271.10(a) as:  

“4) Either:  

i) The HCT/P does not have a systemic effect and is not dependent upon the metabolic activity 

of living cells for its primary function; or  

ii) The HCT/P has a systemic effect or is dependent upon the metabolic activity of living cells for 

its primary function” 

We request that the classification of adipose tissue be expanded from exclusively structural to 

include both structural and/or nonstructural use depending on the intended application. A rigid 

structural definition would focus solely on adipose tissue “characteristics for reconstruction, 

repair, or replacement that relate to its utility to cushion and support the other tissues in the 

subcutaneous layer (subcutaneum) and skin.” While this is an important element, there should 

be equal emphasis on both the structural and nonstructural functions of adipose tissue.   

To this point, adipose tissue is a functional unit composed of different cell types, each of which 

has characteristic nonstructural functions.  Cell types include adipocytes, stem and progenitor 

cells, granulocytes, monocytes, lymphocytes, endothelial cells, pericytes, and stromal cells.1 

Moreover, adipose is a dynamic tissue in which resident cellular components contribute to 

nonstructural tissue healing and repair.2 

 

We present examples of nonstructural properties of adipose tissue: 

Adipocytes Appear in Bone Marrow and Have Nonstructural Functions 

The FDA has exempted bone marrow and blood products from regulation under sections 351 

and 361. That adipose tissue is present in bone marrow and serves numerous nonstructural 

functions has been well recognized for over four decades.  These nonstructural functions 

include:3 

a. Pre-adipocytes as mesenchymal cells in bone marrow 
i. Bone marrow contains a spectrum of mesenchymal cells, including pre-

adipocytes. When exposed to certain cytokines, pre-adipocytes can 
differentiate into adipocytes, osteoblasts and chondrocytes depending on 
the organism’s current needs. This is a nonstructural function. 
 

b. Bone marrow adipocytes and lympho-hematopoiesis  
 



i. Pre-adipocytes and adipocytes regulate lympho-hematopoiesis and 
enable the bone marrow microenvironment to regulate proliferation 
within blood cell lineages so as to favor erythropoiesis rather than 
myelopoiesis. This is a nonstructural function. 
 

ii. Adipocytes also contain metabolic precursors and energy for the purpose 
of lympho-hematopoiesis. This physiologic process has nothing to do with 
providing cushioning and support and therefore is not properly described 
as a structural use of adipose cells. This is a nonstructural function.  

 
iii. Adipocytes contain cholesterol esters, triglycerides and lipoproteins 

which are essential to the synthesis of plasma membranes during blood 
cell development. This is a nonstructural function. 

 
c. Bone marrow and extramedullary adipocytes and energy metabolism:  

 
i. The energy reserves found in adipocytes assist in homeostatic control of 

temperature in the bone marrow microenvironment and throughout the 
body. This is a nonstructural function.  
 

ii. Bone marrow and extramedullary adipocytes therefore contribute to the 
overall energy metabolism of the organism. This is a nonstructural 
function.  

 
d. Bone marrow adipose tissue as an endocrine organ: 4 

 
i. Bone marrow adipose tissue (MAT) increases during caloric restriction 

(CR), is responsible for increased adipokine secretion, and alters skeletal 
muscle adaptation to CR. These and other observations identify MAT as 
an endocrine organ. This is a nonstructural function. 

 

 

Adipocytes and Adipose Stromal Cells within Adipose Tissue Depots Have Numerous 

Nonstructural Functions 

We recognize the structural (passive) Roles of adipose tissue, including: 

 Insulation (subcutaneous fat) 

 Mechanical (infrapatellar fat or Hoffa’s fat pad of the knee joint) 

 Space occupying (bone marrow fat in the elderly)5 
 

However, the multiple nonstructural roles of adipose tissue cannot be ignored. From the first 

references of fat grafting in the world literature in the late 19th century, more than a century 

ago, surgeons recognized the value of fat for not only providing structure and cushioning, but 

also for the potential fat has to heal tissues into which it is grafted.  In 1893 Gustav Neuber was 

the first to describe the use of fat grafts. He transplanted fat to the orbital region to heal the 



adherent scarring which was the sequela of osteomyelitis. He noted the transformation of facial 

scarring to more normal appearing skin and subcutaneous tissues.6 

In 1912, Holländer described the treatment of a breast scar with fat injections.  He instructs the 

reader to  sharply release the adhesions between the bone and skin and place fat to prevent 

the recurrence of the scarring.7 

In 1926, Charles Conrad Miller8 developed a new system for injection of fat grafts.  Miller 

described 36 cases of correcting cicatricial contraction on the face and neck with only 

“moderate shrinkage of the fat. He reported treating with fat grafts “two cases of very 

persistent parotid fistulas…which defied all other methods of treatment—with excellent 

results” which he followed for over five years. 

Favorable outcomes in the germinal period of fat grafting (1893 – 1926) resulted from fat’s 

transformational nonstructural uses in addition to its structural uses to provide cushioning and 

support.  Historically and currently, therefore, fat grafting has been used not just for filling or 

structure, but also for the nonstructural repair of the tissues into which it is placed.8 

The scientific community has expanded the scope of its understanding of the diverse roles of 

adipose tissue.9 A critical factor in shifting the scientific community’s appreciation of the role of 

adipose tissue was the discovery of the first widely accepted adipokine, leptin, in the mid-

1990’s.10  The realization that adipose tissue secreted proteins with systemic actions on 

hematopoietic, reproductive, metabolic, and other cells and tissues demonstrated 

unequivocally that it met the definition of a true “endocrine” organ.11, 12 

 

 

It is now well-recognized that the many nonstructural roles of adipose tissue include the 

following: 

 Endocrine 

 Glucose and lipid metabolism and control via adipokine secretion13 

 Reproductive and endocrine control via adipokine secretion 14-16 

 Immunomodulatory and immunosuppressive systemic control via 
cytokine and protein factor secretion17-22 

Paracrine 

 Angiogenic control via vasculogenic cytokine secretion22-26 

 Hematopoietic control via cytokine secretion locally and systemically27 

 Neurogenesis via secretion of cytokine factors 28-34 
 

 Hematopoietic potential of adipose stem cells in adipose depots 

 Serving as a reservoir for hematopoietic and lymphoid progenitor cells 
similar to the bone marrow18, 35, 36  

 Thermogenesis (brown and beige fat) 37-41 



 Energy reservoir (white adipose depots)42,43 
 

 Promoting Lactation 

 Fat serves as an energy reservoir and nutrient supply for breast epithelial 
cells. Adipose tissue in the breast undergoes profound changes during 
pregnancy and parturition in younger females.  As pregnancy progresses, 
the breast epithelium proliferates in a branching manner to occupy the 
majority of the adjacent adipose tissue and stroma.  At parturition, the 
epithelial cells draw on the lipid reserves of adipocytes within immediate 
proximity and secrete these nutrients into the milk available to the 
newborn infant during suckling.  As long as the mother continues to 
breast feed the infant, the epithelial cells remain viable and active; 
however, if suckling is discontinued for periods of 24 to 48 hours, the 
epithelial cells undergo rapid apoptosis, leaving pre-adipocytes and 
adipocytes as the predominant cell within the breast parenchyma.  While 
the presence and organization of epithelial cells within the breast tissue 
provide it with a unique architecture, the mammary adipocytes 
themselves show remarkable similarity to adipocytes from elsewhere in 
the body.  Thus, the mammary fat pad displays homology to other 
adipose tissue depots.44 

 

  

Regenerative Function 

 Fat tissue is a source of local and circulating multipotent progenitor cells 
capable of repairing and regenerating damaged tissues such as irradiated 
skin, alleviating fibrotic changes, improving mobility and vitality, and 
repairing structures such as hair follicles and lymphatics.45-47  

 Multipotent progenitor cells may be recruited for repair and regeneration 
of ischemic damage induced by acute myocardial infarction.48   

 The adipose mesenchymal stem cells also are present in a perivascular 
position, and serve as progenitors of cells which contribute to vascular 
network formation and vascular structures.49-52  As such, the adipose 
mesenchymal stem cells are located in a position and serve a role shared 
by mesenchymal stem cells located in nearly all body tissues53, and their 
provision to a range of tissues to enhance vascularity or perfusion 
constitutes the provision of a cell which is precisely homologous to that 
already present in the tissue.  

 Adipose mesenchymal stem cells induce a monocyte/macrophage 
phenotype switch from M1 to M2 macrophages, contributing to 
improved infarct healing postacute myocardial infarction. 54 
 

 

 

 



Additional specific examples of adipose tissue’s nonstructural uses: 

1) Modulation of scarring  
a) Treating old burn scars 55-57 
b) Release of adherent scarring/fasciotomies 58 
c) Modulation of scarring in primary cleft lip repair59 

2) Reversal of damage caused by therapeutic radiation 60-63 
For BOTH 
a) Structural (filling tissue defect) uses, and  
b) Nonstructural tissue repair and regenerative uses 60 

3) Treating acute thermal injury 64, 65 
4) Treating Pain 

a) Mitigating implant breast pain66 
b) Improving post-mastectomy pain 67-69 
c) Improving lower back pain70 
d) Nerve or neuroma repair71, 72 

5) Healing ulcers 
a) Treating pressure sores73 
b) Treating chronic non-healing anal fissures and associated stenosis 74 

6) Treating vocal fold paralysis 75-77 
7) Treating velopharyngeal insufficiency 78 
8) Treating scleroderma and systemic sclerosis79 
9) Treating Dupuytren’s disease of the hand 80, 81 
10) Treating Raynaud’s phenomenon: After fat grafting, there is improved symptomatology 

with evidence suggestive of measurably increased perfusion 82 
11) Improving tendon repair 

a) Use of adipose tissue to assist in tenolysis for foot and hand tendon adherence83 
b) Treating adherent tendons and joints in burn patients with fat graft84 

12) Preventing osseous reunion of skull defects 85 
13) Improving the quality of skin86 
 

 

The Impact of Categorizing Adipose as Exclusively Structural 

Defining all use of adipose tissue as structural despite its many nonstructural uses is particularly 

problematic in terms of: 

1. Defining minimal manipulation 
2. Determining homologous use 
3. Applying section 351’s “same surgical procedure” exception  

 

 

Minimal Manipulation 

21 CFR 1271.3(f) distinguishes minimal manipulation of structural tissue from minimal 

manipulation of nonstructural cells and tissues. 



 Minimal manipulation of structural tissue consists of processing that does not alter 
the original relevant characteristics of the tissue relating to the tissue’s utility for 
reconstruction, repair, or replacement. 

 

 For cells and nonstructural tissues that have “a systemic effect or is dependent upon 
the metabolic activity of   living cells for its primary function,” minimal manipulation 
constitutes processing that does not alter “relevant biological characteristics.” 

 

Treating all adipose HCT/Ps solely as structural would define minimal manipulation in terms of 

tissue or cell characteristics relevant to structural properties only. As clearly demonstrated by 

the many nonstructural uses presented above, applying the concept of minimal manipulation 

based on cushioning and padding has no relevance when the intended use is nonstructural. 

Failing to evaluate the characteristics that the FDA has deemed relevant to non-structural use 

would consequently prevent the proper assessment of risk for application of the tissue. For 

nonstructural adipose therapy, this could potentially increase risk while simultaneously 

restricting patient access to therapies. 

 
 
Homologous Use 
 
The FDA defines homologous use as serving the same basic function in the recipient as in the 

donor. Thus, to qualify as homologous use under this definition, adipose tissue that serves a 

nonstructural function in the donor must be used for that same basic purpose in the recipient. 

The Draft Guidance, however, would again use a structural definition that does not fit 

nonstructural use. This would preclude all nonstructural uses from qualifying as homologous 

even though they would otherwise fit FDA’s definition of homologous.  

 
 
Same Surgical Procedure Exception 
 
To qualify for the “same surgical procedure” exception to section 351, the HCT/P must be both 

minimally manipulated and for homologous use. 

 
As previously explained, subjecting all adipose tissue to the definition of structural tissue would 

seem to preclude virtually all nonstructural uses from qualifying as minimally manipulated and 

for homologous use.  This would restrict patient access to therapies that are, in fact, minimally 

manipulated when evaluated in terms of characteristics relevant to intended use, and used for 

a homologous nonstructural purpose. 

 

 
 
 



Decellularized Adipose Tissue and Minimal Manipulation 
 
Even when adipose tissue is classified as structural, the concept that decellularizing the tissue 

alters its ability to perform its structural functions and constitutes more than minimal 

manipulation is unfounded.  While adipose tissue is recognized as containing adipocytes, much 

of the structure of the tissue is imparted by a dense and interconnected framework of fibrous 

tissue.  This fibrous skeleton imparts structural properties irrespective of the presence of cells 

or lipid 87and demonstrate notable  biomechanical properties of tensile strength and elasticity, 

both important for padding and cushioning.88 This collagen skeleton within adipose tissue 

remains after cells are removed, and multiple reports89-93 have demonstrated that de-

cellularized adipose tissue retains structural properties and can be injected to impart padding 

and cushioning of soft tissues.  Moreover, the processing of dermis to an acellular form, a well-

recognized HCT/P, is comparable to the process of removing cells from adipose tissue. Since 

decellularization of dermis is regulated under section 361, decellularization of adipose tissue 

should also be regulated under section 361. 

 
 
Special Considerations for Adipose Tissue and Homologous Use relative to Breast Applications 
 
In Example B-3 of the Draft Guidance, application of adipose based HCT/Ps to the breast is 

declared non-homologous use because “The basic function of breast tissue is to produce milk 

(lactation) after childbirth. Because this is not a basic function of adipose tissue, using HCT/Ps 

from adipose tissues for breast augmentation would general be considered a non-homologous 

use. “   While lactation is a function of the breast, this narrow classification ignores the function 

of the breast as a secondary sex organ and vital component of a woman’s body image.  Indeed, 

lactation is only utilized in women who have children, and for a limited time span. The 

important role of the breast as a secondary sex organ is recognized by federal legislation and 

mandates a woman’s right to breast reconstruction after mastectomy.  Importantly, breast 

reconstruction is often performed in post-menopausal women who will not need to lactate.  

Additionally, breast reconstruction after mastectomy restores the breast mound but never 

results in the ability to lactate, and this procedure is commonly performed by transferring 

adipose tissue flaps. Additionally, fat grafting for breast reconstruction is now a common 

clinical practice.  When considering that the breast is largely composed of fat tissue, applying 

fat based HCT/Ps to restore breast shape should be clearly considered homologous use. 

Importantly, a very common and state-of-the-art method of breast reconstruction involves 

autologous free tissue flap transfer (free flap breast reconstruction).94-96  These tissue flaps are 

completely removed from the body before implanting, and would therefore be considered an 

HCT/P.  By classifying adipose based tissues as non-homologous when applied to the breast, an 

entire class of Centers for Medicare & Medicaid Services (CMS) approved breast reconstruction 

procedures would be at risk for not complying with the same surgical procedure exception.  

Additionally, this would be in opposition to federal legislation that recognizes a woman’s right 

to breast reconstruction after mastectomy by mandating insurance coverage for the 

procedures described above.  



 

IFATS wishes to thank the FDA for the opportunity to comment on this draft guidance 

document.  As a multidisciplinary scientific society composed of adipose stem cell biologists and 

clinician–scientists, we would like the opportunity to engage in dialogue with the FDA.  We 

respectfully request that representatives of the FDA, including the Director of CBER, meet with 

members of IFATS to further discuss issues surrounding the advancement of adipose based 

therapies.    
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