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45 Lyme Road - Suite 304 - Hanover, NH 03755 USA 

Tel: 1-603-643-2325, Fax: 1-603-643-1444 
 
September 26, 2016 

 

Division of Dockets Management (HFA–305)  

Food and Drug Administration 

5630 Fishers Lane, Rm. 1061 

Rockville, MD 20852 

 

Re: FDA-2014-D-1856 - Comments to 2014-2015 Draft Guidance regarding: 
 Docket No. FDA-2014-D-1584: “Same Surgical Procedure Exception under 21 CFR 1271.15(b): Questions 

and Answers Regarding the Scope of the Exception; Draft Guidance for Industry”;  

 Docket No. FDA-2014-D-1696:  “Minimal Manipulation of Human Cells, Tissues, and Cellular and 

Tissue-Based Products; Draft Guidance for Industry and Food and Drug Administration Staff”;  

 Docket No. FDA-2014-D-1856:  “Human Cells, Tissues, and Cellular and Tissue-Based Products from 

Adipose Tissue: Regulatory Considerations; Draft Guidance for Industry”; 

 Docket No. FDA-2015-D-3581:  “Homologous Use of Human Cells, Tissues, and Cellular and Tissue-

Based Products; Draft Guidance for Industry and FDA Staff.” 

 

Dear Sirs and Madams: 

 

The International Federation of Adipose Therapeutics and Sciences (IFATS) appreciates this opportunity 

to submit the following comments to supplement its earlier written comments and recent testimony at the 

September 12-13, 2016 Public Hearing on the 2014-2015 Draft HCT/P Guidances concerning: a) 

Minimal Manipulation; b) Same Surgical Procedure; c) Adipose Tissue; and d) Homologous Use. 

 

IFATS is committed to the responsible advance of the science and translation of new adipose therapies, 

and it is determined to ensure patient safety. It was founded in 2003 by pioneering adipose stem cell 

biologists and clinician–scientists with the goal of advancing the science of adipose tissue biology and its 

clinical translation to therapeutic applications. Since that time, IFATS has remained at the forefront of 

regenerative medical applications involving adipose tissue and cells. Membership now spans 40 countries 

in North America, Europe, Africa, the Middle East, Asia, Australia, and Central and South America, and 

includes basic scientists, translational researchers, clinicians, and regulatory and biotech representatives. 

IFATS is formally aligned with, and its members serve on the editorial boards of the prestigious journals, 

Stem Cells and Stem Cells Translational Medicine.  With the International Society for Cellular Therapy 

(ISCT), IFATS has provided the scientific community with a detailed description and definition of 

adipose derived cells (both stromal vascular fraction, or SVF, and adipose-derived stromal/stem cells, or 

ASCs) in the formal publication entitled Cytotherapy.
 
Thus, IFATS possesses the necessary expertise to 

assist regulatory agencies in understanding adipose tissue, and regulating the safety and efficacy of 

adipose-related products and therapies.  

 

Drawing on this expertise, IFATS has reviewed the 4 draft guidances with great care. It respectfully 

requests the FDA to reconsider and modify the 4 draft HCT/P guidances as follows:  
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Recommendation #1 - Cell-Based Risks: Interpret and evaluate an HCT/P’s homologous use 

and minimal manipulation based on its manufacturer’s intended use in the patient.  

 

Recommendation #2 - Provider-Based Risks: Reduce provider-created risks by targeting 

provider behavior.    
 

Recommendation #3: Recognize that adipose HCT/Ps have both structural and nonstructural 

functions, and regulate based on its manufacturer’s intended use in the patient. 

 

Recommendation #4: Revise the evaluation of minimal manipulation and homologous use as 

they pertain to particular applications of adipose tissue. 
 

◊ ◊ ◊ ◊ ◊ ◊ ◊ 
 

IFATS recognizes the FDA’s challenge in developing regulations that fulfill the agency’s dual and 

interrelated responsibilities of protecting patients while promoting innovation. IFATS further recognizes 

that although these are complementary rather than competing objectives, they are often difficult to pursue 

simultaneously. The FDA’s 3-tiered, risk-based §§ 361 – 351 framework balances these concerns by 

making the degree of regulatory oversight proportionate to the degree of an HCT/P therapy’s risk.   

 

The concepts of homologous use and minimal manipulation are key determinants of whether an HCT/P 

will be classified as a § 361 product (which does not need premarket approval) or a § 351 drug, device 

and/or biological product (which requires formal premarket approval).  The applicability of § 351’s “same 

surgical procedure” exception also turns on homologous use and minimal manipulation. For most 

manufacturer-clinicians, § 351 categorization raises insurmountable obstacles due to the time and expense 

of obtaining premarket approval. In such cases, § 351 classification effectively prohibits access to safe 

and effective HCT/P therapies, even when those therapies involve a patient’s own cells and/or can deliver 

superior results with reduced risks.  At the same time, § 351 oversight is essential for therapies that pose 

greater risks due the HCT/P’s characteristics, mechanism(s) of action and circumstances of use.   

 

A second type of risk involves rogue clinicians offering false promise in the form of unproven therapies 

performed with few safeguards and less training.  Provider misconduct is not unique to HCT/P therapies; 

it pervades all areas of medical practice. Nevertheless, IFATS shares the FDA’s alarm over such practices 

in the context of HCT/Ps, and is equally determined to curtail them. Because a solution cannot solve a 

problem without identifying and attacking its root cause, effective regulation of HCT/P-related risks must 

recognize and respond to their multivariate causes. Put simply: 

 

 Sections 351 and 361 appropriately attempt to regulate HCT/P therapies proportionate to the 

risks of unpredictable and/or unsafe cell behavior.  

 

 However, the risks of untrained providers misusing HCT/P therapies are caused by providers 

misbehaving, not cells misbehaving. 

 

Consequently, interpretive guidance that restricts the definition and application of HCT/P terminology 

can only go so far in restricting provider-based risks.  In addition, restrictive, inaccurate or imprecise 

definitions and interpretations carry their own risks of restricting access to therapies and restricting a 

patient’s right to evaluate risk through the process of informed consent.  

 

Therefore, IFATS recommends that the FDA adopt an overall two-part strategy that focuses on both 

categories of HCT/P risks, i.e., those relating to cell behavior and those that pertain to provider behavior. 
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Recommendation #1 - Cell-Based Risks:  

Interpret and evaluate an HCT/P’s homologous use and minimal manipulation based on its 

manufacturer’s intended use in the patient. Interpretive guidance should predicate each 

definition on to the functions and/or characteristics of the specific composition (i.e., cell type(s) 

and/or matrix or other component(s)) that are involved in, and/or relevant to the manufacturer-

clinician’s intended use in the patient.    

 

Recommendation #2 - Provider-Based Risks:  

To reduce provider-created risks, the FDA should target provider behavior by collaborating 

with IFATS and comparable organizations to draw on and supplement existing federal and state 

methods of certification, registration, and similar measures.   

 

Adopting this two-part strategy can control risk more comprehensively - and therefore more effectively - 

in furtherance of the FDA’s dual and interrelated obligations of protecting patients and promoting the 

availability of HCT/P therapies.  IFATS explains each recommendation as follows:  

 

Recommendation #1 - Cell-Based Risks: Interpret and evaluate an HCT/P’s homologous use and 

minimal manipulation based on its manufacturer’s intended use in the patient. 

 

The four draft guidances on homologous use, minimal manipulation, same surgical procedure and adipose 

tissue individually and collectively intend to “improve stakeholders’ understanding” of 21 CFR 1271 by 

clarifying the FDA’s interpretation of homologous use and minimal manipulation. As demonstrated by 

the initial round of public comments and the ensuing public hearing on September 12 and 13, 2016, the 

draft guidance documents have not clarified applicable regulations. They have instead compounded the 

difficulty of understanding and complying with them. The drafts’ introduction of new definitional 

inaccuracies has also amplified rather than reduce patient risk.  

 

IFATS respectfully requests the agency to clarify the definitions and application of homologous use and 

minimal manipulation by interpreting each as referring to the characteristics of the specific cell type(s) 

and/or the matrix or other component(s) that are involved in, and/or relevant to the manufacturer’s 

intended use in the patient.   Thus, the definition of homologous use with interpretive guidance would 

read as follows: 

 

21 CFR 1271.3(c): Homologous use means the repair, reconstruction, replacement, or 

supplementation of a recipient's cells or tissues with an HCT/P that performs the same basic 

function or functions in the recipient as in the donor. 

 

Recommended GUIDANCE: As used in this section, “performs the same basic function or 

functions in the recipient as in the donor” shall be interpreted as referring to one or more of 

the function(s) of the specific composition of the therapeutic/product, reflecting the specific 

cell type(s) and/or the specific matrix or other component(s) in the donor tissue that are 

involved in, and/or relevant to the manufacturer’s intended use in the patient.    

 

Similarly, the definition of minimal manipulation with interpretive guidance would read as follows: 

 

21 CFR 1271.3(f)   Minimal manipulation means: 

 

(1) For structural tissue, processing that does not alter the original relevant characteristics of the 

tissue relating to the tissue's utility for reconstruction, repair, or replacement;  
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(2) For cells or nonstructural tissues, processing that does not alter the relevant biological 

characteristics of cells or tissues. 

 

Recommended GUIDANCE: As used in this section, “relevant” characteristics shall be 

interpreted to mean the characteristics of the specific cell type(s) and/or the specific matrix or 

other component(s) in the donor tissue that are involved in, and/or relevant to the 

manufacturer’s intended use in the patient.    

 

Rationale: Incorporating and relying on the manufacturer’s intended use harmonizes the interpretation and 

definition of homologous use and minimal manipulation with statutory directives to predicate the 

regulation of drugs, devices and biologics on the manufacturer’s intended use.  

 

Defining relevant characteristics in terms of “the characteristics of specific cell type(s) and/or the matrix 

or other component(s) in the donor tissue that are involved in, and/or relevant to the manufacturer’s 

intended use in the patient” promotes patient safety by insisting on a reasonable and scientifically 

supportable rationale for using an HCT/P for a particular mechanism of action. This clarification balances 

the FDA’s dual responsibilities of protecting patients from undue safety risks while promoting the 

ongoing availability and continued development of HCT/P therapies. 

 

Example of Non-Homologous Use:  Decellularized adipose matrix used to accomplish the 

manufacturer’s intended use of a particular metabolic or systemic effect in the patient (e.g., 

reducing insulin levels in a diabetic patient) is non-homologous because decellularized matrix is 

not relevant to metabolic or systemic activity. 
 

◊ ◊ ◊ ◊ ◊ ◊ ◊ 
 

Recommendation #2 - Provider-Based Risks: To reduce provider-created risks, the FDA should target 

provider behavior by collaborating with IFATS and comparable organizations to draw on, and 

supplement existing federal and state methods of certification, registration, and similar measures.    

 

For a risk-reduction strategy to succeed, it must target the root cause of the risk. Revising, retracting or 

replacing interpretations of regulatory terminology can target the risks of cells behaving in an unsafe 

ways, but can do little to prevent providers from behaving in unsafe ways. Because the risks of 

irresponsible providers offering unsafe treatments are not exclusive to HCT/P therapies, many federal and 

state mechanisms already exist for identifying, disciplining and prohibiting clinics and clinicians from 

endangering patients.  

 

IFATS shares the FDA’s concern about provider-related risks in the HCT/P sector and shares its 

determination to end or minimize these risks. IFATS respectfully requests the FDA to collaborate with it 

and comparable organizations to identify and draw on existing federal and state methods for curtailing 

provider misconduct, and developing additional protections in the form of provider certification, 

registration, monitoring and similar measures.  At present, the §§ 351-361 regulatory framework does 

not – and cannot – adequately respond to this form of risk.  Collaboration among stakeholders and 

coordination with existing means of provider oversight offers the most effective and efficient strategy for 

protecting patients from provider-created risk.  

 

Therefore, IFATS respectfully requests the FDA to meet with IFATS, the American Association of Blood 

Banks and other accreditation bodies for the purpose of working together to identify provider-focused 

safety objectives and measures that can be translated into formal accreditation requirements and 

interpretive guidance.  
 

◊ ◊ ◊ ◊ ◊ ◊ ◊ 
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Recommendation #3: Recognize that adipose HCT/Ps have both structural and nonstructural 

functions, and regulate based on its manufacturer’s intended use in the patient. 

 

IFATS requests the FDA to expand its definition of adipose tissue from exclusively structural in function 

to include both structural and/or nonstructural functions, depending on the manufacturer’s intended use in 

the patient. This modification is critically necessary in order to: 

 

a. Reconcile the interpretive guidance on the definition and regulation of adipose with 

applicable statutory and regulatory requirements;  

b. Reflect and ensure biological accuracy; and most importantly,  

c. Regulate an HCT/P’s risks based on the manufacturer’s intended use and mechanisms of 

action in the patient. 

 

More specifically: 

 

a. Recognizing adipose tissue’s structural and/or nonstructural functions is required by applicable 

statutory and regulatory requirements.  

 

Adipose HCT/Ps must be defined as having structural and/or nonstructural functions to align the draft 

guidance with statutory and regulatory recognition that cells and tissues may have more than one 

function. According to 42 USC § 321(g)(1), “[t]he term ‘drug’ means … (B) articles intended for use in 

the diagnosis, cure, mitigation, treatment, or prevention of disease in man or other animals; and (C) 

articles (other than food) intended to affect the structure or any function of the body of man or other 

animals; and (D) articles intended for use as a component of any article specified in clause (A), (B), or 

(C). (emphasis added).  Statutory directives to focus on intended use pervade FDA regulation, including 

the regulation of drugs, biologics, devices, cosmetics, pesticides and more. Applicable statutes and 

regulations explicitly and implicitly recognize that the human body is complex, and its tissues and cells 

are often versatile and multi-functional. For example, 21 CFR 1271.3(c)’s definition of homologous use 

correctly recognizes that an HCT/P may have more than one “basic function.”  It never says or even 

suggests that an HCT/P can only have one function, or that the regulator has sole authority to define that 

function and thereby dictate a manufacturer’s intended use. And yet the draft guidances do just that by 

insisting that adipose HCT/Ps are solely structural.  

 

To align interpretive guidance with the regulations and statutory provisions being interpreted, IFATS 

respectfully requests the FDA to avoid pre-determining specific functions and uses for specific HCT/Ps. 

Instead, it should base regulations and guidance on the HCT/P’s function(s) and characteristic(s) that are 

relevant to its intended use by the manufacturer. 

 

b. Recognizing adipose tissue’s structural and/or nonstructural functions is necessary to correct 

factual inaccuracy. 

  

Regulation 21 CFR 1271.10(a)(4) categorizes an HCT/P as “either” structural or nonstructural, depending 

on its function. A structural HCT/P “does not have a systemic effect and is not dependent upon the 

metabolic activity of living cells for its primary function.” A nonstructural HCT/P “has a systemic effect 

or is dependent upon the metabolic activity of living cells for its primary function.”  

 

The draft adipose guidance expressly acknowledges that adipose tissue contains adipocytes, 

preadipocytes, fibroblasts, vascular endothelial cells, a variety of immune cells, and also stores energy in 
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the form of lipids. Citing only Junqueira’s Basic Histology: Text &Atlas,1 the draft guidance classifies 

adipose as a connective and therefore structural tissue.  This result is internally inconsistent and factually 

inaccurate – and the FDA’s sole cited authority explains why.  

 

Junqueira classifies connective tissue as: 1) connective tissue proper; 2) embryonic connective tissues; 

and 3) specialized connective tissues. The latter category defines specialized connective based on their 

principal specialized functions. Blood, reticular connective tissue, adipose tissue, bone and cartilage all 

qualify as specialized connective tissues with specialized, nonstructural functions. Junqueira’s examples 

include the following:  

 

 Blood is a specialized connective tissue; its principal function of transport is nonstructural.  

 

 Reticular connective tissues include the liver, pancreas, bone marrow and lymph nodes. They are 

nonstructural tissues because their principal functions are metabolic, including endocrine. 

 

 According to Junqueira - the FDA’s sole cited authority - adipose tissue is nonstructural 

specialized connective tissue; its primary function is metabolic with co-existing structural 

features. 

 

Junqueira’s categorization of adipose as primarily nonstructural reflects longstanding scientific 

consensus. In1893, Gustav Neuber described his use of fat grafting in the orbital region to heal the 

adherent scarring which was the sequela of osteomyelitis. As a result of its nonstructural healing 

functions, the fat graft transformed facial scarring to more normal appearing skin and subcutaneous 

tissues. [6]
 
In 1912, Holländer described the successful use of fat injections to prevent the recurrence of 

scarring following breast surgery. [7] In 1926, Charles Conrad Miller
 
developed a new system for 

injecting fat grafts, and described 36 cases of correcting cicatricial  contraction on the face and neck, and 

reported “excellent results” for another 2 cases after using fat grafts to treat “very persistent parotid  

fistulas…which defied all other methods of treatment.” [8] These and similarly favorable outcomes 

resulted from fat’s transformational nonstructural repair of the tissues into which it was placed. [8] 

 

The understanding of the diverse roles of adipose tissue has steadily expanded [9],
 
due in large part to the 

discovery of the first widely accepted adipokine, leptin, in the mid-1990’s. [10]
  

Adipose tissue secretes  

proteins  with  systemic  actions  on hematopoietic, reproductive, metabolic, and other cells and tissues 

demonstrates unequivocally that adipose meets the definition of a true “endocrine” organ.[11,12]  A 

Google scholar search of all available online medical and research databases for “the primary function of 

Adipose Tissue” returns 538,000 journal articles. Although the search did not designate a specific 

function, the search results referred to adipose tissue almost exclusively as a nonstructural metabolic and 

endocrine organ with secretory properties. A search for an exact match of the phrase “primary function of 

adipose tissue” yielded the following: “It was long believed the primary function of adipose tissue was 

energy storage; in fact, stromal adipose is a complicated endocrine organ.” However, even energy storage 

is nonstructural. 

 

The FDA’s draft guidance on minimal manipulation defines nonstructural tissues as “serv[ing] 

predominantly metabolic or other biochemical roles in the body such as hematopoietic, immune, and 

endocrine functions.” To illustrate, the draft guidance offers “cord blood, lymph nodes, pancreatic tissue” 

as examples of nonstructural tissue. These tissues are indeed nonstructural – but they are also specialized 

                                                             
1 Chapter 6. Adipose Tissue. In: Mescher AL. eds. Junqueira's Basic Histology: Text & Atlas, 13e. New York: 

McGraw-Hill; 2013. http://accessmedicine.mhmedical.com/content.aspx?bookid=574&Sectionid=42524592. 
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connective tissue, as explained in Junqueira. In addition adipose has “hematopoietic, immune, and 

endocrine functions,” as explained below. As demonstrated by Junqueira, adipose HCT/Ps clearly do 

more than “reconstruction, repair, or replacement that relate to its utility to cushion and support the 

other tissues in the subcutaneous layer (subcutaneum) and skin.”  And the FDA’s own nonstructural 

examples prove that classifying connective tissue, including adipose tissue as solely structural is 

factually inaccurate and logically flawed. 

 

Thus, IFATS strongly recommends that the draft guidances be revised to define and categorize adipose 

tissue has both structural and nonstructural functions. 

In support, IFATS offers the following examples of adipose’s nonstructural, and combined nonstructural 

and structural functions. 

 

Nonstructural Functions of Adipose HCT/Ps: 

 

1. Nonstructural Endocrine Functions - It is well recognized that adipose is an endocrine organ 

which, like other endocrine organs, performs a variety of nonstructural functions. Adipose tissue 

secretes proteins with nonstructural, systemic actions on hematopoietic, reproductive, metabolic, 

and other cells and tissues. [11, 12] 

Examples: 

a. Glucose and lipid metabolism control via adipokine secretion [13] 

b. Reproductive and endocrine control via adipokine secretion [14-16] 

c. Immunomodulatory and immunosuppressive systemic control via cytokine and protein factor 

secretion [17-22] 

 

2. Nonstructural Paracrine Functions 

a. Angiogenic control via vasculogenic cytokine secretion [22-26] 

b. Hematopoietic control via cytokine secretion, both locally and systemically [27] 

c. Neurogenesis via secretion of cytokine factors [28-34] 

 

3. Nonstructural Hematopietic Potential of adipose stem cells in adipose deposits 

a. Reservoir for hematopoietic and lymphoid progenitor cells similar to bone marrow [18, 35, 

36] 

b. Thermogenesis (brown and beige fat)[37-41] 

c. Energy reservoir (white adipose depots) [42,43] 

 

4. Nonstructural Promotion of Lactation 

a. Fat serves as an energy reservoir and nutrient supply for breast epithelial cells. 

b. As pregnancy progresses, the breast epithelium proliferates in a branching manner to occupy 

the majority of the adjacent adipose tissue and stroma. 

c. At parturition, the epithelial cells draw on the lipid reserves of adipocytes within immediate 

proximity and secrete these nutrients into the milk available to the newborn infant during 

suckling. 

d. As long as the mother continues to breast feed the infant, the epithelial cells remain viable 

and active. 

e. If suckling is discontinued for periods of 24 to 48 hours, the epithelial cells undergo rapid 

apoptosis, leaving pre-adipocytes and adipocytes as the predominant cell within the breast 

parenchyma. 

f. While the presence and organization of epithelial cells within the breast tissue provide it with 

a unique architecture, the mammary adipocytes themselves show remarkable similarity to 

adipocytes from elsewhere in the body. Thus, the mammary  fat pad displays homology to 

other adipose tissue depots.[44] 
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5. Nonstructural Regenerative Functions 

a. Local and circulating multipotent progenitor cells can repair and regenerate damaged tissues 

such as repairing irradiated skin, alleviating fibrotic changes, improving mobility and vitality, 

and repairing structures such as hair follicles and lymphatics.[45-47]. Specific examples 

include: 

 Modulation of scarring 

 Treating old burn scars [55-57] 

 Release of adherent scarring/fasciotomies [58] 

 Modulation of scarring in primary cleft lip repair [59] 

 

b. Multipotent progenitor cells may be recruited for repair and regeneration of ischemic damage 

induced by acute myocardial infarction. [48] 

 

c. Adipose mesenchymal stem cells as progenitor cells in a perivascular position contribute to 

vascular network formation and vascular structures.[49-52]    As such, the adipose 

mesenchymal stem cells are located in a position and serve a role shared by mesenchymal 

stem cells located in nearly all body tissues [53]. Adipose MSCs located in a range of tissues 

can enhance vascularity and perfusion, and thus provide cells that are precisely homologous 

to those already present in the tissue. 

 

d. Adipose mesenchymal stem cells induce a monocyte/macrophage phenotype switch from M1 

to M2 macrophages, contributing to improved infarct healing post-acute myocardial 

infarction. [54] 

 

6. Nonstructural Functions in Bone Marrow - Bone marrow and blood products are exempt from 

regulation under §§ 351 and 361. For over 40 years, it has been clearly established that adipose is 

present in bone marrow where it serves a wide variety of nonstructural functions. The following 

physiologic processes have nothing to do with providing cushioning and support and therefore are 

not properly categorized as a structural use or function of adipose cells. [3] 

 

a. Pre-adipocytes as mesenchymal cells in bone marrow: Bone marrow contains a spectrum of 

mesenchymal cells, including pre-adipocytes that can perform the nonstructural function of 

differentiating into adipocytes, osteoblasts and chondrocytes depending on the organism’s 

current needs.   

 

b. Pre-adipocytes and adipocytes regulate lympho-hematopoiesis and enable the bone marrow 

microenvironment to regulate proliferation within blood cell lineages to favor erythropoiesis 

rather than myelopoiesis. Adipocytes also contain nonstructural metabolic precursors and 

energy for the purpose of lympho-hematopoiesis.  This is a nonstructural function. 

 

c. Adipocytes are essential for synthesizing plasma membranes during blood cell development 

because they contain cholesterol esters, triglycerides and lipoproteins.  

 

d. Bone marrow and extramedullary adipocytes are critical for homeostatic control of 

temperature in the bone marrow microenvironment and throughout the body, and thus 

contribute to the overall energy metabolism of the organism.  

 

e. Bone marrow adipose tissue is an essential endocrine organ.[4] Bone marrow adipose tissue 

(MAT) increases during caloric restriction (CR), is responsible for increased adipokine 

secretion, and alters skeletal muscle adaptation to CR. These and other observations identify 

MAT as an endocrine organ.  
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BOTH Nonstructural and Structural Functions: In the following examples, adipose’s structural and 

nonstructural functions combine for the patient’s benefit:  

 

1. Reversal of damage caused by therapeutic radiation [60-63] 
a. Structural (filling tissue defect) uses, and 

b. Nonstructural tissue repair and regenerative uses [63] 

 

2. Treating acute thermal injury [64-65] 
a. Treating Pain Mitigating implant breast pain [66] 

b. Improving post-mastectomy pain [67-68] 

c. Improving lower back pain [70] 

d. Nerve or neuroma repair [71-72] 
 

3. Healing ulcers 

a. Treating pressure sores [73] 
b. Treating chronic non-healing anal fissures and associated stenosis [74] 

 

4. Treating vocal fold paralysis [75-77] 

5. Treating velopharyngeal insufficiency [78] 

6. Treating scleroderma and systemic sclerosis [79] 

7. Treating Dupuytren’s disease of the hand [80, 81] 
8. Treating Raynaud’s phenomenon - After fat grafting, there is improved symptomatology with 

evidence suggestive of measurably increased perfusion [82] 

9. Improving tendon repair 

a. Adipose tissue assists in tenolysis for foot and hand tendon adherence. [83] 

b. Treating adherent tendons and joints in burn patients with fat graft [84] 

10. Preventing osseous reunion of skull defects [85] 

11. Improving the quality of skin [86] 
 

c. Regulating an HCT/P’s risks based on the manufacturer’s intended use and mechanisms of 

action in the patient ensures meaningful evaluation and effective regulation of risk. 

 

The §§ 351-361 framework conditions the degree of regulatory oversight on the degree of an HCT/P’s 

risk.  The homologous use and minimal manipulation criteria are central to determining whether an 

HCT/P will be classified as a § 361 or § 351 product, and if the latter, whether § 351’s “same surgical 

procedure” exception will apply. In turn, the existence of homologous use and minimal manipulation 

depend on the HCT/P’s structural or nonstructural function.  More specifically:  

 

21 CFR 1271.3(c) defines homologous use as “the repair, reconstruction, replacement, or 

supplementation of a recipient's cells or tissues with an HCT/P that performs the same basic 

function or functions in the recipient as in the donor.” 

 

21 CFR 1271.3(f) evaluates minimal manipulation of structural tissue in terms of processing that 

does not alter “the original relevant characteristics of the tissue relating to” the tissue's utility for 

reconstruction, repair, or replacement. For nonstructural tissues, it evaluates “the relevant 

biological characteristics of cells or tissues.”  

 

Insisting that adipose be evaluated as exclusively structural precludes any evaluation of its nonstructural 

functions despite their presence and importance in the donor and intended use and therapeutic benefits for 

the recipient.  Failing § 361’s homologous use and minimal manipulation criteria are virtually guaranteed. 

This effectively prohibits any nonstructural use, and precludes any meaningful evaluation of their risks. 
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As a result, it effectively prohibits patient access to safe nonstructural applications of adipose tissue and 

thereby undermines the FDA’s obligations to protect patients and promote innovation.  

 

The “same surgical procedure” exception to § 351 also becomes completely unavailable for 

nonstructural use of adipose because it similarly requires homologous use and minimal manipulation.   
 

◊ ◊ ◊ ◊ ◊ ◊ ◊ 
 

Recommendation #4: Revise the evaluation of minimal manipulation and homologous use as they 

pertain to particular applications of adipose tissue, (as detailed below). 

 

IFATS respectfully requests the FDA to reconsider three particular applications of adipose tissue with 

regard to homologous use and minimal manipulation, each of which is required for § 361 classification as 

well as § 351’s “same surgical procedure” exception. In specific, IFATS requests the FDA to change its 

prior examples of the absence of homologous use and/or minimal manipulation to recognize the 

following: 

 

a. Decellularizing adipose tissue for structural use is minimal manipulation. 

b. Structural use of fat in the breast constitutes homologous use. 

c. Stromal vascular fractionation (SVF) of adipose to obtain nonstructural adipose components 

for use as a nonstructural  tissue constitutes minimal manipulation.   

Each is explained in order 

  

a. Decellularizing adipose tissue for structural use is minimal manipulation. 

  

The draft guidance currently states that decellularizing structural adipose tissue constitutes more than 

minimal manipulation because the process alters the tissue’s ability to perform structural functions. This 

is incorrect. Adipose tissue’s structural functions are performed by a dense and interconnected skeleton of 

reticular fiber and dense connective tissue. Its biomechanical properties include tensile strength and 

elasticity, both of which are central to the structural functions of padding and cushioning. 

 

Nonstructural components such as adipocytes, pre-adipocytes, lipids, etc. do not contribute to adipose’s 

structural characteristics or functions.  It is well recognized that decellularization leaves adipose’s 

structural components fully intact. It does not alter, disturb or weaken the remaining reticular fiber and 

dense connective tissue skeleton, or compromise its ability to perform structural functions. Multiple 

reports
 
have demonstrated that decellularized adipose tissue retains structural properties and can be 

injected to impart padding and cushioning of soft tissues. [89-93] 

 

The FDA already classifies decellularized dermis as minimally manipulated, thereby acknowledging that 

the process of decellularization does not alter structural characteristics or functions of the remaining 

structural matrix. Removing cells from dermis and removing cells from adipose employ comparable 

methods to achieve comparable results. Decellularizing adipose for structural use, like decellularizing 

dermis for structural use, does not alter structural characteristics.   

 

For these reasons, IFATS respectfully requests the FDA to revise the draft guidance to recognize that 

decellularized adipose is minimally manipulated as required by § 361 and § 351’s “same surgical 

procedure exception.” 
 

b. Structural use of fat in the breast constitutes homologous use. 

 

Example B-3 of the draft adipose guidance states that application of adipose-based HCT/Ps to the breast 
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is nonhomologous use because “[t]he basic function of breast tissue is to produce milk (lactation) after 

childbirth. Because this is not a basic function of adipose tissue, using HCT/Ps from adipose tissues for 

breast augmentation would generally be considered a non-homologous use.” This logic is flawed and 

must be corrected because it mischaracterizes the function of the breast, and mischaracterizes the function 

of adipose in breast surgery.  

 

 For the purpose of determining homologous use, the basic function of the breast is a secondary sex 

organ. In terms of shape, form and appearance, the breast is vital to a woman’s bodily integrity and 

body image, psychological sense of self, and overall physical and emotional health and well-being. 

 

 Lactation is not the sole or even primary function of the breast.  

o Most women never lactate, but their breasts do function as secondary sex organs throughout their 

adolescence and adulthood.  

o When lactation does occur, it is episodic, time-limited, and accounts for a very small fraction of a 

woman’s lifespan.  

o Even when healthy, post-menopausal women cannot lactate.  Restoring lactation is thus 

completely irrelevant to restoring breast function.  

o All men have breasts, thousands develop breast cancer each year, and many will need 

reconstructive surgery -- even though men do not lactate.  

 

 Federal law recognizes and protects the breast’s importance as a secondary sex organ.  

o The Women’s Health and Cancer Rights Act, 29 USC § 1185b(a), requires group health insurers 

to cover “all stages” of breast reconstruction following mastectomy or irradiation, including 

bilateral correction of asymmetrical appearance where one breast is otherwise unaffected.  

o Restoring lactation is not a goal or even a remote concern of this law. In fact, lactation is never 

mentioned in the statute’s text, legislative history or associated regulations.  

 

 The function of adipose tissue in breast surgery is structural and therefore homologous.  

o Mastectomy removes more than the ability to lactate. It removes size, shape and form by 

removing the breast mound, which is predominantly adipose. Consequently, applying adipose 

tissue for the structural purpose of restoring form and shape is homologous use. 

o By classifying adipose based tissues as non-homologous when applied to the breast, an entire 

class of Centers for Medicare & Medicaid Services (CMS) approved breast reconstruction 

procedures would be at risk for not complying with the same surgical procedure exception. For 

example:  

 

 Autologous free tissue flap transfer (“free flap” breast reconstruction) is performed by 

transferring complex musculocutaneous flaps containing adipose tissue. One of the most 

common methods of reconstruction, it qualifies as an HCT/P because it completely removes 

fat-containing tissue flaps from the body before implanting. [94-96] Fat grafting for breast 

reconstruction is another common clinical practice. 

 According to the draft adipose guidance, these and other methods of breast reconstruction 

could no longer be used without formal premarket approval because they do not restore 

lactation and are therefore non-homologous.   Focusing solely on restoration of lactation 

ignores the fact that the breast is largely composed of fat tissue and its size, shape and form 

can be reconstructed with fat tissue.  

 This and other methods of breast reconstruction will no longer be available for clinical use 

under § 361 or § 351’s same surgical procedure exception because they will not restore 

lactation. 

 Removing these and other reconstructive methods from clinical application has nothing to do 
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with risk.  It is instead a perverse outcome of insisting that breast reconstruction be evaluated 

for its ability to restore the breast’s minor and episodic function of lactation despite fat’s 

ability to restore the breast’s size, shape and function as a secondary sex organ.  

 

For these reasons, IFATS respectfully requests the FDA to revise the draft HCT/P guidance 

documents to recognize that as applied to the breast, adipose tissue is homologous use because it 

performs the structural functions of restoring, repairing or reforming size, form and shape. .  

 

 

c. When intended for a nonstructural use in the patient, stromal vascular fraction (SVF)cells should 

be evaluated as nonstructural when determining minimal manipulated and homologous use. 

 

The FDA’s draft adipose guidance expressly acknowledges that adipose tissue contains a variety of 

nonstructural components, including adipocytes, preadipocytes, fibroblasts, vascular endothelial cells, a 

variety of immune cells, and also stores energy in the form of lipids. These are nonstructural because the  

cells perform the same regenerative functions in vivo as they do in vitro and animal models. [97-

98] Nonstructural adipose HCT/Ps are readily available in the stromal vascular fraction (SVF). Stromal 

vascular fractionation of lipoaspirate (typically obtained through liposuction) can remove fat’s structural 

components, making nonstructural  SVF cells available for nonstructural use in a patient.  Just as 

removing nonstructural cells through decellularization does not alter the relevant structural characteristics 

or structural function of the remaining structural matrix, removing structural components does not alter 

the relevant nonstructural characteristics or nonstructural function of the remaining nonstructural SVF 

components. 

 

This is minimal manipulation under 21 CFR 1271.3(f)(2) because extracting nonstructural 

cells or tissues from lipoaspirate “does not alter the relevant biological characteristics of cells or 

tissues.”  

 

Also, this is homologous use under 21 CFR 1271.3(c) because it uses lipoaspirate’s 

nonstructural HCT/Ps for “repair, reconstruction, replacement, or supplementation of a recipient's 

cells or tissues with an HCT/P that performs the same basic function or functions in the recipient 

as in the donor.”  

 

Examples: Nonstructural adipose tissue for homologous use, with minimal and more than 

minimal manipulation   Reversal of radiation damage as intended nonstructural use 

 

Homologous use with no manipulation: Using liposuction aspirate to perform fat 

grafting/adipose tissue therapy for the intended use or of reversing radiation damage in the 

breast – a nonstructural function - is homologous use. The structural side-effect of increasing 

volume may be a collateral benefit, but the intended use is still nonstructural tissue repair.  

 Use is homologous because the HCT/P performs that same basic nonstructural function in 

both donor and recipient. 

 

Homologous use with minimal manipulation: Using liposuction aspirate is indicated for the 

nonstructural function of reversing radiation damage in the neck without the volume gain of a fat 

graft.  Separating nonstructural from structural components obtains nonstructural SVF cells for 

nonstructural use in the patient.  

 Use is homologous because it is performing the intended nonstructural function of 

reversing radiation damage.  

 Manipulation is minimal because processing does not alter relevant nonstructural 

biological characteristics. 

https://en.wikipedia.org/wiki/Stroma_(animal_tissue)
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Homologous use with more than minimal manipulation: Using liposuction aspirate is indicated 

for the nonstructural function of reversing radiation damage in the intestines by catheter 

injection of nonstructural SVF. However, an adequate dose is difficult to obtain because the 

patient is cachectic (low body fat caused by caloric depletion from radiation enteritis). Culture 

expansion is considered as a means of increasing dose.  

 Use is again homologous because SVF cells would perform the intended nonstructural 

function of reversing radiation damage.  

 Manipulation is more than minimal because culture expansion of cells to yield a 

therapeutic dose alters relevant biological characteristic.  SVF cells in their natural state 

do not engage in linear growth to create a homogeneous monoculture. Even tumors do 

not produce homogeneous monocultures. 
 

Examples: SVF for nonhomologous use  Bone (re)generation 

 

SVF cells do not normally form bone in their native location. Delivering SVF cells to bone for the 

intended structural function of directly (re)generating new bone (via action of "stem cells") might 

be considered. Processing might involve combining SVF cells with one or more additives (such as 

ex vivo culture media additives) for the intended structural function of (re)generating NEW bone 

(such as additives added to our culture medias ex vivo). For this scenario: 

 Use is nonhomologous because the basic function in donor and patient will differ if 

nonstructural SVF cells are combined with one or more additives (such as ex vivo culture 

media additives) for the intended structural function of (re)generating NEW bone (such 

as additives added to our culture medias ex vivo). 

 Manipulation is more than minimal because processing would alter the nonstructural 

SVF’s original relevant characteristics.  
 

◊ ◊ ◊ ◊ ◊ ◊ ◊ 
 

The members of IFATS are grateful for the FDA’s willingness to re-open and extend the period for public 

comments and allow additional time for the September 2016 public hearing on the 2014-2015 draft 

HCT/P draft guidances.  As a multidisciplinary scientific society composed of adipose stem cell biologists 

and clinician–scientists, IFATS would greatly appreciate the opportunity to work with the FDA in 

meeting the challenges of regulating HCT/P therapies. We respectfully request that representatives of the 

FDA, including the Director of CBER, meet with members of IFATS to discuss the issues addressed 

herein as well as others that pertain to the advancement and regulation of adipose-based therapies. 

 

 

Respectfully submitted on behalf of IFATS, 

 

 

Adam J. Katz, MD, FACS  

Chair, IFATS Regulatory Affairs Committee & IFATS Co-Founder  

University of Florida College of Medicine 

Professor 

Director of Plastic Surgery Research,  

Laboratory of BioInnovation and Translational Therapeutics 

Division of Plastic Surgery, Department of Surgery
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